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Executive Summary 
 
The BIG LEAP project focuses on developing solutions for the Second Life Batteries 
(SLBs) Battery Management System (BMS) and its reconfiguration process. 
Technology breakthroughs will be made in its BMS, as a new three-layer architecture 
will be designed to ensure interoperability, safety, and reliability. It will be 
complemented with an adaptable Energy Storage System (ESS) design to ensure 
BMS integration and expand the SLB's potential applications. Additionally, the BIG 
LEAP project intends to optimize the battery reconfiguration process by making it 
cost-effective, faster, and standardized. 
 
The methodology for the development of these innovations includes the collection 
of Electric Vehicle (EV), maritime E-Vessel, and ESS batteries that will be dismantled, 
and the data collected will serve as the basis for the BMS architecture development. 
It will contain adaptable State-of-X (SOX) algorithms for accurate battery 
measurement, a Digital Twin (DT) for real-time monitoring, and a standardization 
roadmap. The new BMS will be integrated into the batteries, alongside the ESS and 
will be tested in three demo sites. Two physical demos will be in Paris and Prague, 
and a virtual demo will be in Morocco. They aim to validate the novel BMS and ESS, 
proving their optimization and interoperability. 
 
This document is the BIG LEAP deliverable No. 3.1, being the first deliverable of WP3. 
This work package is focused on the development of adaptive SOX and Remaining 
Useful Life (RUL) estimators, enhanced battery models and the cloud-based 
software layer. In this context, D3.1 serves as a baseline for the development of the 
mentioned algorithms and breaks ground for the main tasks to be developed within 
WP3. Specifically, this deliverable reports the specific methodologies and 
specifications for each of the SOX and RUL algorithms to be developed. Additionally, 
data collection is addressed and guidelines for data standardization are given. The 
data collection is divided into the identification of open-access databases and the 
collection of data from battery OEMs participating in BIG LEAP.   
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Introduction 
 

In the rapidly evolving field of ESSs and lithium-ion batteries, the effective 

management of these systems is understood as fundamental to ensure their 

longevity, reliability, and performance. Central to this management are the State of 

X (SOX) and Remaining Useful Life (RUL) estimators. These algorithms are essential 

for accurately monitoring and predicting the health and performance of batteries, 

which in turn can significantly enhance their operational efficiency and lifecycle. For 

the SLB applications currently under study in BIG LEAP project, this becomes even 

more crucial, as their longevity and reliability might be even more uncertain due to 

their previous use in a first life application.  

In order to tackle this issue, WP3 of BIG LEAP project focuses on the development of 

adaptive SOX and RUL estimators, enhanced battery models, and the cloud-based 

software layer. On the one hand, SOX algorithms include a range of state estimations 

such as State of Charge (SOC), State of Energy (SOE), State of Health (SOH), State of 

Safety (SOS) and State of Power (SOP). These estimations provide comprehensive 

insights into various aspects of battery performance and condition: SOC indicates 

the current charge level of a battery, SOH assesses its overall health and capacity, SOS 

specifies its safety level, and SOP determines its ability to deliver power under 

specific conditions. On the other hand, RUL algorithms predict the remaining 

operational lifespan of a battery before it requires replacement or significant 

maintenance. These predictions are vital for planning maintenance schedules, 

reducing downtime, and minimizing operational costs. 

The mentioned SOX and RUL estimators, the battery models and the cloud layer are 

key elements of the interoperable BMS developed as one of the main outcomes of 

BIG LEAP. According to the methodology proposed in the project, the first step prior 

to the development of the algorithms and their integration into the different BMS 

layers is the definition of their specifications and the collection of data for their 

development. This is addressed in Task 3.1 of the project.  

The development and effectiveness of SOX and RUL algorithms heavily depend on 

the quality and relevance of the data used for this purpose. Appropriate data 

collection and standardization are fundamental to create robust models that can 

reliably monitor and predict battery states. This involves gathering extensive data 

from various battery types, operating conditions, and usage scenarios. The data 

must be meticulously processed and analysed to identify key patterns and 
correlations that inform algorithm development. 
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A typical approach in battery engineering consists of deploying extensive laboratory 

tests to generate this mentioned data. However, this is a time-consuming approach 

that requires several months (or even years) to obtain a sufficiently populated 

database. Due to this reason, BIG LEAP project proposes the use of open access data 

and the operational data provided by some of the partners to develop the SOX and 

RUL algorithms and the battery models. This deliverable explains the process 

carried out to gather this data, analyse it and select the most appropriate databases 
for the development of the algorithms and models,  

In short, deliverable D3.1 addresses all the activities carried out in Task 3.1 of BIG 

LEAP project. First of all, Section 1 defines the specifications of the SOX and RUL 

algorithms to be developed within WP3. This includes the definition of the estimator 

itself, the methodology in which the algorithm will be based (this will be developed 

in T3.2 of the project), the characteristics of the data required to develop the 

algorithm, and the criteria that will be used to evaluate the effectiveness of the 

estimators. Then, Section 2 addresses the data compilation activity. As previously 

mentioned, this step is divided into the identification of open access databases, and 

the provision of operational data from the project partners. This section explains the 

process carried out to identify the most appropriate data for the development of 

each of the algorithms. In the next step, Section 3 defines the guidelines for the 

standardization of this data. Finally, Section 4 includes the methodology that will be 

used in the following tasks of WP3 to integrate the data into the SUNDIAL platform, 
which will be a key step for the development of the cloud layer of BIG LEAP project.  
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1. Specifications of SOX/RUL algorithms 
 

This section defines the specifications of all the SOX (SOC, SOH, SOP and SOS) and 

RUL algorithms to be developed in BIG LEAP project. For each algorithm, the 

following information is defined: 

• The definition of the estimated variable. For instance, in the case of SOC, 

what does "State of Charge" mean. 

• The methodology that will be used to develop the algorithm. In any case, note 

that the algorithms will be developed in T3.2 and the detailed methodology 

and validation will be extensively explained in Deliverables D3.2 and D3.3.  

• The characteristics of the data required to estimate the variable. The data 

requirements will be then considered in Section 2 of this deliverable for the 

definition of the most appropriate data batches for each algorithm or 

estimator. 

• The evaluation criteria: which key performance indicators (KPIs) will be 

defined for each algorithm. 

1.1. State of Charge (SOC) 

1.1.1. SOC definition 
 

The SOC indicates the remaining battery electric charge in a battery at a specific time 

instant 𝑡 (𝐶(𝑡)) compared to a fully charged battery (𝐶𝑓𝑢𝑙𝑙). In other words, it shows 

the remaining autonomy of the system until it is completely discharged. As can be 

seen in the following equation, the SOC shows the ratio between the remaining 
charge and the capacity of the battery when it is fully charged, both in Ah. 

𝑆𝑜𝐶(𝑡) =
C(𝑡)

𝐶𝑓𝑢𝑙𝑙
∙ 100 

Different variables such as battery temperature, charge and discharge current and 

battery SOH influence battery capacity, so it is necessary to develop estimators that 

take all these factors into account. 

When creating a SOC estimator, it is important to keep in mind that the actual 

measurement will have noise and error. The SOC algorithm must be able to take this 

error into account and be as robust as possible in order to obtain the most accurate 
estimation and be affected as little as possible by this error and noise.  

The developed algorithm should be tested at different temperatures, charging, and 

discharging currents and SOH in order to properly estimate the SOC under different 

conditions. 
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1.1.2. Methodology for SOC estimation 
 

The development of the SOC algorithm will be based on an iterative, data-driven 

approach. Initially, data will be collected (which will include data from public 

databases as well as real application data provided by the different partners), 

obtaining measurements of battery voltage, current and temperature under various 

charging and discharging conditions, as well as collecting historical data of charging 

and discharging cycles. Once the data is obtained, preprocessing will be performed 

including cleaning and filtering to remove outliers and noise, as well as 
normalization to ensure consistency in the measurements. 

In the model development stage, appropriate modelling techniques will be selected, 

including machine learning techniques, such as neural networks specific to deal with 

timeseries data. The model will be trained using the public datasets and validated 

by cross-validation to assess its accuracy and robustness.  

Subsequently, the model will be optimized using the real application data, adjusting 

parameters, and retraining the model to improve the accuracy of the SOC for each 
specific cell type. 

1.1.3. Requirements of data for SOC estimation 
 

For the development and testing of the SOC algorithm, the data must meet certain 

characteristics. First, they must be accurate, with precision voltage and current 

measurements and temperature measurement accuracy. The temporal resolution of 

the data is also crucial, so they must be recorded at consistent time intervals, such 

as every second. In addition, the data must be representative, covering a wide range 

of operating conditions, including different states of charge, discharge, 

temperatures, and usage cycles. It is essential to have a sufficient volume of data to 

cover all these scenarios to ensure the robustness of the algorithm. 

Table 1 reviews the data requirements for SOC estimation. It is worth noting that the 

current resolution is defined with the relative unit C-rate, which refers to the 

charged/discharged current in relation to the battery capacity. This unit is 

considered to be more appropriate than Ampere (A), due to the variance in capacity 
between different batteries.  

Table 1. SOC data requirements. 

SOC data requirements 

Voltage  
Resolution  

Voltage 
Sample 

Rate  

Temp. 
Resolution 

Temp. 
Sample 

Rate  

Current 
Resolution 

Current 
Sample 

Rate  

Other 
Signals 

0.005 V 
(cell level) 

1 Hz 1ºC 0.1 Hz 0.01 C 1 Hz N/A 
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1.1.4. Evaluation criteria 
 

To evaluate the performance of the algorithm, different key performance indicators 

(KPIs) will be used. The accuracy of the SOC will be one of the main indicators, 

evaluated by the Mean Absolute Percentage Error (MAPE) in the SOC estimation, 

which should be less than 3% according to the project KPI matrix (see Deliverable 

D1.3).  

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑌𝑖 − 𝑌𝑖̂

𝑌𝑖
|

𝑛

𝑖=1

 

being 𝑛 the namber of evaluation points, 𝑖 the current evaluation point, 𝑌𝑖 the actual 

value, and 𝑌𝑖̂ the predicted value.  

In order to account for large deviations, the Root Mean Square Error (RMSE) will 

also be evaluated, defined by: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑌𝑖 − 𝑌𝑖̂)

2
𝑛

𝑖=1

 

Additionally, the maximum error will be also used as an evaluation criterion, 
providing insight into the worst-case performance of the algorithm: 

𝑀𝑎𝑥. 𝐸𝑟𝑟𝑜𝑟 = 𝑚𝑎𝑥|𝑌𝑖 − 𝑌𝑖̂| 

The robustness of the algorithm will also be evaluated, considering its performance 

under extreme temperature and load conditions, as well as its ability to handle noisy 

or incomplete data. Computational efficiency is another important KPI, measured by 

the processing time per SOC estimation and the use of resources such as CPU and 
memory.  

1.2. State of Energy (SOE) 

1.2.1. SOE definition 
 

The SOE is a similar state compared to the SOC, but in this case the SOE shows the 

remaining energy at a given instant (𝐸𝑛𝑒𝑟𝑔𝑦𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔(𝑡)) relative to the 

dischargeable energy when the cell is fully charged (𝐸𝑛𝑒𝑟𝑔𝑦𝑓𝑢𝑙𝑙). That can be 

expressed as follows: 

𝑆𝑜𝐸(𝑡) =
𝐸𝑛𝑒𝑟𝑔𝑦𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔(𝑡)

𝐸𝑛𝑒𝑟𝑔𝑦𝑓𝑢𝑙𝑙
∙ 100 
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The advantage of using this state over the SOC is that it shows the energy state in 
which the applications are dependent, as the battery voltage varies across the SOC.  

Similar to the SOC, the SOE estimations vary also depending on variables such as 

battery voltage, current or SOH. 

1.2.2. Methodology, requirements of data and 
evaluation criteria for SOE 

 

Both the SOC and SOE algorithms will utilize the same neural network architecture, 

which will process identical input data to generate two distinct outputs: the SOC and 

the SOE of the battery. Consequently, the methodology and data requirements for 

both algorithms are identical and are detailed comprehensively in Section 1.1.2 and 

Table 2. Similarly, the KPIs used to evaluate the performance of the SOE algorithm 

will be also the ones specified in Section 1.1.4. 

In this context, Table 2 reviews the data requirements for SOE estimation.  

Table 2. SOE data requirements. 

SOE data requirements 

Voltage  
Resolution  

Voltage 
Sample 

Rate  

Temp. 
Resolution 

Temp. 
Sample 

Rate  

Current 
Resolution 

Current 
Sample 

Rate  

Other 
Signals 

0.005 V 
(cell level) 

1 Hz 1ºC 0.1 Hz 0.01 C 1 Hz N/A 

 

1.3. State of Health (SOH) 

1.3.1. SOH Definition 
 

The SOH represents the health condition of the battery as it ages. The most common 

way to quantify SOH is by comparing the currently usable discharge (diminished) 

capacity with the nominal capacity of the new battery: 

𝑆𝑂𝐻 =  
𝐶𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒

𝐶𝑛𝑜𝑚𝑖𝑛𝑎𝑙
 

Typically, this value is given as a percentage. Another parameter to quantify the SOH 
is the State of Resistance (SOR) of the battery: 

𝑆𝑂𝑅 =  
𝑅𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒

𝑅𝑛𝑜𝑚𝑖𝑛𝑎𝑙
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As a battery ages, its resistance generally increases, leading to higher 𝐼2𝑅 joule 

losses. The diminished usable capacity and increased losses due to resistance have 

a compounding negative effect on the energy available from the battery. 

Since both discharge capacity and internal resistance vary with operating 

conditions, it is important to consider values taken under the same reference 

conditions for accurate SOH (State of Health) and SOR (State of Resistance) 

definition. For Big Leap, two separate approaches will be developed by two 

consortium partners, Berner Fachhochschule (BFH) and Fraunhofer (FHG). 

1.3.1. Methodology for SOH Estimation (BFH) 
 

The implementation of this algorithm will be based on a Machine Learning (ML) 

algorithm applied to the BFH Statistical Data Frame (SDF). In this approach, the 

historical usage data of the battery is stored as histograms as opposed to a time 

series. The advantage is that the size of the data frame doesn't change throughout 

the lifetime of the battery. The histograms capture how much time the battery spent 

in certain operating conditions, for example how much time the battery spent in a 

certain temperature, C-rate, or SOC range. The Histograms can also capture multiple 

dimensions at once, for example how much time the battery spent in a certain C-rate 
range while in a certain SOC range. 

The ageing of a battery is heavily dependent on the conditions it was operated in 

during its lifetime. The ML algorithm will be trained on SDFs generated from open 

data sets that reflect these various conditions. BFH approach involves Random 

Forest regression methods as it is robust to new data and to outliers and more 
importantly, it allows for the estimation of features importance.  

1.3.2. Data Requirements for SOH Estimation 
(BFH) 

 

The Data for SOH estimation and its validation must be precise and have a high 

enough sampling rate to capture dynamic processes, such as 1Hz for the voltage and 

current, and 0.1Hz for the cell temperature. The development data must be 

representative of commonly used cell chemistries and cover a variety of operating 

conditions and ageing patterns. 

Table 3. SOH Data Requirements 

SOH data requirements 

Voltage  
Resolution  

Voltage 
Sample 

Rate  

Temp. 
Resolution 

Temp. 
Sample 

Rate  

Current 
Resolution 

Current 
Sample 

Rate  

Other 
Signals 

0.001 V 
(cell level) 

1 Hz 0.1ºC 0.1 Hz 0.1 C 1 Hz N/A 
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1.3.3. Methodology for SOH Estimation (FHG) 
 

The general approach for the AI-based SOH estimation algorithm is to combine the 

neural network (NN) architectures incorporating the properties of the long short-

term memory (LSTM) and convolutional neural networks (CNN). Depending on the 

performance and accuracy attention techniques may be used to improve the 

estimation further. To create a generalized SOH model transfer learning (TF) 

strategies will be combined with a smart hyperparameter tuning approach. This will 

enable a generalized, accurate SOH estimation for different cell chemistries and for 

different battery cell applications (entirely usage and load profiles) different. This 

approach should enable to widely eliminate the influence of the measurement noise 

on the SOH estimation accuracy. 

1.3.4. Data Requirements for SOH Estimation 
(FHG) 

 

Current, cell voltage, and temperature are required as data input for the SOH 

estimation. As higher currents, even if they are only shortly applied, have a large 

impact on the SOH directly, and indirectly due to the temperature rise, the current 

needs to be sampled at a relatively high frequency. The temperature as the other 

main driver of aging must sampled accurately, but due to the large mass of the cell 

and therefore the slow thermal response a lower sampling rate is sufficient. The data 

requirements for cell voltage are state-of-the-art. 

Table 4. SOH Data Requirements 

SOH data requirements 

Voltage  
Resolution  

Voltage 
Sample 

Rate  

Temp. 
Resolution 

Temp. 
Sample 

Rate  

Current 
Resolution 

Current 
Sample 

Rate  

Other 
Signals 

0.001 V 
(cell level) 

10 Hz 0.1ºC 0.1 Hz 0.01 50 Hz N/A 

 

1.3.5. Evaluation Criteria 
 

The primary key performance indicator (KPI) of the SOH algorithm, is that it should 

achieve a Mean Absolute Percentage Error (MAPE) of less than 3%.  

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑌𝑖 − 𝑌𝑖̂

𝑌𝑖
|

𝑛

𝑖=1
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As in the SOC and SOE cases, the RMSE will be also used as evaluation criteria, in 
order to account for large deviations: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑌𝑖 − 𝑌𝑖̂)

2
𝑛

𝑖=1

 

Finally, the algorithm's performance should be assessed based on its estimation 

efficiency, meaning it should quickly and effectively process data to produce health 
evaluations with minimal computational overhead. 

1.4. State of Power (SOP) 

1.4.1. SOP Definition 
 

The SOP represents the power limits of a battery at any given time and operating 

condition. This algorithm must provide an estimation of the maximum charge and 

discharge power the battery can sustain over a certain period without causing 

premature degradation. There are many different approaches to calculating and 
describing power limits, but they all commonly share the fundamental principles of  

1. Ensuring the terminal voltages of all cells in the battery system remain within 

safe operating bounds. 

2. Maintaining system design limits on power and current 

3. Optimizing the inherent trade-off between battery pack performance and 

degradation. 

To avoid rapidly changing system power limits, the charge and discharge power 

limits 𝑝𝑚𝑎𝑥,𝑐ℎ and 𝑝𝑚𝑎𝑥,𝑑𝑐ℎ should be predicted up to a future time horizon of ∆𝑇 

seconds. Within this predicted timespan, the battery must be able to sustain the 

estimated power limits without exceeding system design limits. These power limits 

are continuously re-estimated before the time horizon ∆𝑇 is reached, creating a 

moving estimation window that is updated with a frequency 𝑓𝑢𝑝𝑑𝑎𝑡𝑒 >  
1

∆𝑇
. 

1.4.2. Methodology for SOP Estimation 
 

The SOP will be determined using an Equivalent Circuit Model (ECM), whose 

parameters will be determined by an on-board impedance analysis developed in 

task 2.2. Batteries are not ideal voltage sources, as their OCV is dependent on State 

of Charge (SOC), and they have an internal resistance. 

The ECM that will be used for the SOP algorithm is the polarization model. This 

model features parallel RC-elements that model time-dependent polarization effects 

(activation and diffusion) in the battery. 
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Figure 1. nth Order ECM 

The number of parallel RC-elements used in the model depends on the fidelity of the 

impedance measurement developed in task 2.2 and thus remains to be determined.  

The power limits 𝑝𝑚𝑎𝑥,𝑐ℎ and 𝑝𝑚𝑎𝑥,𝑑𝑐ℎ for a time horizon ∆𝑇 will be determined by 

calculating the instantaneous ∆𝑣 due to the 𝑅0 series resistance as well as the time-

dependant ∆𝑣 due to the polarization effects based on the ECM. The sum of ∆𝑣 after 
∆𝑇 must not lower the cell terminal voltage below 𝑣𝑚𝑖𝑛 or raise it above 𝑣𝑚𝑎𝑥 . 

 

Figure 2. Voltage Response to a Current Pulse 

1.4.3. Data Requirements for SOP Estimation 
 

The data for the SOP estimation must be precise and have a very high sampling rate 

such as 10Hz in order capture highly dynamic processes. It is crucial to be able to 

correlate fast variations in cell current to the cell's voltage response. The 

development data for the algorithm must include pulse tests as well as 

Electrochemical Impedance Spectroscopy (EIS) tests to compare the results. 
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Table 5. SOP Data Requirements 

SOP data requirements 

Voltage  
Resolution  

Voltage 
Sample 

Rate  

Temp. 
Resolution 

Temp. 
Sample 

Rate  

Current 
Resolution 

Current 
Sample 

Rate  

Other 
Signals 

0.001 V 
(cell level) 

10 Hz 0.1ºC 0.1 Hz 0.01 C 10 Hz N/A 

 

1.4.4. Evaluation Criteria 
 

The primary key performance indicator (KPI) of the SOP algorithm, is that it should 
achieve a Mean Absolute Percentage Error (MAPE) of less than 3%.  

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑌𝑖 − 𝑌𝑖̂

𝑌𝑖
|

𝑛

𝑖=1

 

The algorithm must effectively provide an accurate estimate of the available system 

power for a given estimation window in near real-time, while maintaining low 
computational overhead. 

1.5. State of Safety (SOS) 

1.5.1. SOS Definition 
 

SOS represents how safe a battery is. While the general concept of safety is intuitive, 

numerically quantifying it is an imprecise task often subject to interpretation. 

Currently, there is no unified standard for defining and classifying SOS, leading to 
multiple ways of indicating a battery's safety. 

One approach is to define a safety operation area (SOA), within which the battery 

can operate with very low risk. The SOA specifies that the battery's voltage and 

temperature must remain within certain values, which differ for each battery and 

must be provided by the manufacturer. Figure 3 shows a common diagram of the 
SOA for a battery. 
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Figure 3. SOA for a battery that depicts different states during the charging procedure [1]. 

The European Council for Automotive R&D (EUCAR) uses a hazard level description 

to qualitatively categorize battery hazard states into eight levels, from 0 to 7, with 

increasing severity [2]. 

A common quantitative method to define hazard levels is based on hazard risk, 

where the lower the risk, the safer the battery. Hazard risk (𝐻𝑅) is defined as the 

product of hazard severity (𝐻𝑆) and the likelihood of occurrence (𝐻𝐿) [3]:  

HR =  HS ∙ HL 

Another way to define SOS is as the reciprocal of the probability of abuse [4]:  

fSOS(x) =
1

fabuse(x)
 

where 𝑓𝑆𝑂𝑆(𝑥)and 𝑓𝑎𝑏𝑢𝑠𝑒(𝑥) are the safety and abuse functions respectively, and 𝑥 

represents all types of state and control variables that describe the behavior of the 
battery, for example voltage, temperature, current, etc. 

Based on these interpretations, SOS can be defined as a dynamic and quantitative 

measure that integrates multiple factors affecting battery safety to provide real-time 

assessments. It evaluates the probability of safe operation under varying conditions 

by considering factors such as voltage, temperature, current, mechanical 

deformation, SOC, SOH, internal impedance, and other abuse conditions. 

1.5.2. Methodology for SOS Estimation  
 

To estimate the SOS algorithm, a generic theoretical framework must be established. 

Assuming SOS is the reciprocal of the abuse function, the final equation is derived 

from this basis. Here is a summary, with further details available in [4]. 
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To keep 𝑺𝑶𝑺 within a workable range, it is set between 0 and 1, like SOC: 

𝒇𝑺𝑶𝑺(𝒙) =
𝟏

𝒈(𝒙) + 𝟏
 

where 𝒈(𝒙) is the abuse function for values ≥ 0. Preferably, 𝒈(𝒙) is quadratic, defined 

by parameters 𝒎 and 𝒅: 

𝒇𝑺𝑶𝑺(𝒙) =
𝟏

𝒎[𝒉(𝒙) + 𝒅]𝟐 + 𝟏
 

being 𝒉(𝒙) the adapted abuse function.  

The values of 𝒎 and 𝒅 can be derived by defining two points. The resulting equation 

is: 

𝒇𝑺𝑶𝑺(𝒙) =
𝟏

𝟎. 𝟐𝟓[
𝒙 − 𝒙𝟏𝟎𝟎

𝒙𝜻 − 𝒙𝟏𝟎𝟎
]𝟐 + 𝟏

 

This equation allows the derivation of a safety expression for any variable 𝑥 by 
defining the safety and compromised safety states. 

As a probability function, 𝑺𝑶𝑺 is the product of all safety subfunctions: 

𝑆𝑂𝑆 = 𝑓1(𝑥1) ∙ 𝑓2(𝑥2) ∙ ⋯ ∙ 𝑓𝑛(𝑥𝑛) 

Each subfunction has a minimum value 𝜁 to ensure safe behavior and a maximum of 

1, with key values being: 

• 𝑆𝑂𝑆 = 1 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑙𝑦 𝑠𝑎𝑓𝑒 (𝑎𝑙𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 1) 

• 𝑆𝑂𝑆 = 𝜁 𝑤𝑎𝑟𝑛𝑖𝑛𝑔 (𝑜𝑛𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑦 𝑏𝑒 𝑎𝑡 𝜁) 

• 𝑆𝑂𝑆 = 𝜁𝑛  𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (𝑎𝑙𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝜁) 

• 𝑆𝑂𝑆 <  𝜁𝑛 𝑢𝑛𝑠𝑎𝑓𝑒 (𝑎𝑙𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑏𝑒𝑙𝑜𝑤 𝜁) 

The SOS algorithm will be developed using a data-driven approach. During the 

model development phase, suitable modeling techniques, including machine 

learning methods, will be chosen. The model will be trained with the public datasets 

mentioned in Section 2 and validated to evaluate its accuracy and robustness. 

Following this, the model will be optimized with real application data, involving 

parameter adjustments and retraining to enhance the algorithm's accuracy. 
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1.5.3. Data Requirements for SOS Estimation 
 
The following table reviews the data requirements for the SOS algorithm.  

Table 6. SOS Data Requirements 

SOS data requirements 

Voltage  
Resolution  

Voltage 
Sample 

Rate  

Temp. 
Resolution 

Temp. 
Sample 

Rate  

Current 
Resolution 

Current 
Sample 

Rate  

Other 
Signals 

0.01 V (cell 
level) 

10 Hz 1ºC 0.1 Hz 0.1 C 10 Hz N/A 

 

1.5.4. Evaluation Criteria 
 

To validate the baseline SOS algorithm, data from safety tests obtained from open 

sources, as detailed in Section 2, will be used. These tests are considered the best 

framework for validating the SOS algorithm because they reflect conditions outside 

the recommended bounds, precisely the situations the SOS algorithm is designed to 

detect. The safety tests include three different methods: nail penetration, thermal 

abuse, and short circuit test. 

Unlike other algorithms, the SOS algorithm cannot be compared to a close-to-real 

SOS value because there is no physical measure for “safety.” Therefore, the validation 

focuses on the algorithm’s ability to prevent catastrophic events, such as thermal 

runaway. The evaluation of the SOS algorithm will be conducted through both 

physical and virtual tests. SOX values will be monitored throughout the duration of 
both virtual and physical tests. 

1.6. Remaining Useful Life (RUL) 

1.6.1. RUL definition 
 

Remaining Useful Life (RUL) is defined as the time remaining until the battery 

requires replacement or significant maintenance, i.e., until it reaches its End of Life 

(EOL). BIG LEAP project approaches the transition of batteries from its first life to 

their second life. Therefore, RUL is divided into two separate concepts: Remaining 

Useful First Life (RU1L) and Remaining Useful Second Life (RU2L). RU1L is defined 

as the remaining time until a battery reaches its EOL during its first life (EO1L), and 

RU2L is defined as the remaining time until a battery reaches its EOL during the 
second time (EO2L).  

Table 7 reviews the criteria that will be used in BIG LEAP project for the definition 

of EO1L and EO2L, which directly affect into the definition of RU1L and RU2L. 
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 Note that many batteries used in second life do not directly start at their 80% SOH, 

as many of them are discarded before ending the typical EO1L criteria due to other 

reasons. This is the reason why the SOH threshold difference between EO1L and 
EO2L is reduced. 

Table 7. EO1L and EO2L definition criteria. 

EO1L and EO2L definition criteria 

EOL  SOH threshold  

End of 1st Life 80% 

End of 2nd Life 70% 

 

1.6.2. Methodology for RUL estimation 
 

On the one hand, RU1L estimation algorithm will be based on a data-driven 

approach, in which the relation between the typical degradation factors (time in rest, 

SOC during rest, temperature during rest, depth of discharge in operation, middle 

SOC in operation, temperature in operation, and charge and discharge currents in 

operation) and the associated degradation will be modelled. The algorithm will be 

trained with the data specified in Section 2, and will allow evaluating the impact of 

different future scenarios into the RU1L.  

Similarly, the RU2L prognostic algorithm is also a data-driven approach. The 

proposed scheme models the comparatively fast second-life aging dynamics of the 

energy storage system, derived from factors such as trends in capacity degradation 

and the evolution of the cells' series resistance. The impact of the other cell 

parameters, including temperature, depth of discharge, C-rate, and, most 

importantly, the first life uses history, play a key role in the proposed RU2L scheme. 

Machine learning-based approaches will be used in training the RU2L algorithm, 

considering the data listed in section 2. The aim of the algorithm is to estimate the 

reaming cycle life of the energy storage system for the present use cases. The 

effectiveness of the proposed scheme will be evaluated considering the performance 
indices defined in sub-section 1.6.4. 

1.6.3. Requirements of data for RUL estimation 
 

The specifications of the data required for the development and training of RU1L and 

RU2L algorithms is defined in Table 8. As it can be seen, the requirements are 

smoother compared to the previous algorithms, as the dynamics affecting the long-

term degradation of batteries are lower.  



 

 

 

Date: 23/08/2024                                                   Pag. 25 of 48 

 

Title: D3.1 - Methodologies for SOX, Self-Diagnosis 

and RUL algorithms development and data 

collection 

Table 8. RUL data requirements. 

RUL data requirements 

RUL 
Voltage  

Resolution  

Voltage 
Sample 

Rate  

Temp. 
Resoluti

on 

Temp. 
Sampl
e Rate  

Current 
Resoluti

on 

Curre
nt 

Sampl
e Rate  

Other 
Signal

s 

RU1L 0.05 V (cell level) 1 Hz 1ºC 0.1 Hz 0.1 C 0.2 Hz N/A 

RU2L 0.05V (Cell level) 1 Hz 1oC 0.1 Hz 0.1 C 0.2 Hz N/A 

 

1.6.4. Evaluation criteria 
 

RU1L algorithm will be evaluated according to the following KPIs: 

• On the one hand, the RU1L definition is expected to be within an error 

threshold of the 10%: 

𝑅𝑈1𝐿𝑒𝑟𝑟𝑜𝑟 = 𝑎𝑏𝑠 (
𝑅𝑈1𝐿𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 − 𝑅𝑈1𝐿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑅𝑈1𝐿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
) · 100 < 10% 

• On the other hand, as the RU1L definition will be based on the estimation of 

the capacity loss, the MAE of the capacity estimations will be also evaluated. 
An error below the 5% is expected for this measure: 

𝑀𝐴𝐸𝑄 = ∑
𝑆𝑂𝐻𝑖−𝑒𝑠𝑡 − 𝑆𝑂𝐻𝑖−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑆𝑂𝐻𝑖−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
· 100

𝑁

𝑖=1

< 5% 

Similarly, the RU2L algorithm's performance will be assessed using Absolute 

Percentage Error (APE) and Mean Absolute Error (MAE). Performance indices 

should be limited to within 10% and 5% and can be defined as:  

 

𝑅𝑈2𝐿𝐴𝑃𝐸 = |
𝑅𝑈2𝐿𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 − 𝑅𝑈2𝐿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑅𝑈2𝐿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
| · 100 < 10% 

 

𝑅𝑈2𝐿𝑀𝐴𝐸 = |
1

𝑁
∑

𝑆𝑂𝐻(𝑖)𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 − 𝑆𝑂𝐻(𝑖)𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑆𝑂𝐻(𝑖)𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑁

𝑖=1

| · 100 < 5% 
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2. Data Gathering for SOX/RUL 
algorithms 

 
This section presents the battery operation data collected during the development 
of task T3.1. This data has been collected aiming its use in the successive tasks of 
WP3, that is to say, in order to be useful in the development and parametrization of 
the battery models, SOX and RUL estimators.   
Section 2.1 focuses on the identification of open access databases. These databases 
may include battery data obtained at laboratory environments, where 
characterization or degradation experiments are held at static and dynamic 
conditions; or battery data obtained from real operation.  In this section, a series of 
open-access databases are identified, and for each algorithm (SOC, SOE, SOH, SOP, 
SOS and RUL) the most appropriate ones are defined, based on the characteristics of 
their data. 
On the other hand, section 2.2 focuses on the battery operational data provided by 
the battery OEMs participating in BIG LEAP project (OCTAVE, SIRO, SOLITEK and 
CORVUS). This data complements the data collected from the open access databases 
and represents data from real operation.  
 

2.1. Open Access Databases 
 
The first step for the selection of the most appropriate data for each algorithm has 
been the identification of a series of databases containing battery operation data. 
These databases have been identified based on the previous work made by different 
agents and publicly available in sites such as Battery Archive [2], Battronics [3], or 
in different publications [4] [5] [6] [7]. Moreover, some databases have been 
identified searching in the web key words such as "battery operational database". 
Table 9 below shows the list of the identified databases. The table assigns an ID to 
each database, and displays the data source (laboratory, field or synthetic data), the 
sample size, the cathode chemistry and the reference of the batch.  

Table 9. Identified Open Access Databases 

Open Access Battery Databases 

ID Name Data 
Source1 

Sample 
Size 

Cathode 
Chemistry 

Ref. 

1 CALCE CS2 Lab 15 LCO [5] 

2 CALCE CX2 Lab 12 LCO [6] 

3 CALCE PL Lab 16 LCO [7] 

4 CALCE Storage and Test Lab 144 LCO [8] 

5 
CALCE Accelerated Cycle 
Life 

Lab 192 LCO [9] 
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6 
HNEI Relaxation 
Benchmark 

Lab 12 
NMC 

LFP 
[10] 

7 
HNEI Synthetic V vs. Q 
Training Dataset 

Syn N/A LFP [11] 

8 
HNEI Synthetic Training 
Diagnosis Dataset 

Syn N/A LFP [12] 

9 
HNEI Synthetic Training 
Prognosis Dataset 

Syn N/A LFP [13] 

10 
ORNL/Sandia 
Mechanically Induced 
Thermal Runaway 

Lab 105 

NMC 

LMO 

 LFP 

LCO 

[14] 

11 SANDIA 2020 cycling data Lab 
30 (LFP) 
24 (NCA) 
32 (NMC) 

LFP 

NCA 

NMC 

[15] 

12 
Sandia Cell Cycle Testing 
Data 

Lab 24 

LCO 

LFP 

NCA 

NMC 

[16] 

13 
Sandia Cell Abuse Testing 
Data 

Lab 12 

LCO 

LFP 

NCA 

NMC 

[17] 

14 
Oxford Battery 
Degradation Dataset 1 

Lab 8 LCO [18] 

15 
Oxford energy trading 
battery degradation 
dataset 

Lab 6 NMC [19] 

16 
Oxford Path Dependent 
Battery Degradation Part 1 

Lab 12 NCA [20] 

17 
Oxford Path Dependent 
Battery Degradation Part 2 

Lab 12 NCA [21] 

18 
Oxford Path Dependent 
Battery Degradation Part 3 

Lab 12 NCA [22] 

19 UofM Cyclic Aging Dataset Lab 21 NMC [23] 

20 
NASA Randomized Battery 
Usage Data Set 

Lab 28 LCO [24] 

21 
NASA Accelerated Battery 
Life Testing Data Set 

Lab 14 NCA [25] 

22 
Stanford Aging Based on 
Real Driving Profiles 

Lab 10 NMC [26] 

23 
Toyota Fast Charge Cycle 
Life Prediction 

Lab 124 LFP [27] 
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24 
Toyota-MIT-Stanford Fast 
Charging 

Lab 192 LFP [27] 

25 XJTU battery dataset Lab 55 NMC [28] 

26 
AESA BIT-MIT Battery 
Degradation Dataset 

Lab 77 LCO-NMC [29] 

27 
EVBattery Real-World 
Charging Dataset  

Field 464 - [30] 

28 Battery Failure Databank Lab - - [31] 

29 Experimental cycling data Lab 130 

LCO 

NCA 

NMC 

[32] 

30 
Experimental galvanostatic 
discharge tests at different 
C-rates  

Lab 18 

NCA 

LFP 

NMC 

[33] 

31 
EIS data of li-ion battery 
for SOH estimation using 
ML 

Lab - NMC [34] 

1 Data source: Laboratory (Lab), Field (Field), Synthetic (Syn) 

In the following sub-sections, an analysis of the databases identified in Table 9 is 

carried out, focusing on the specific data characteristics required by each algorithm. 

As a result of this analysis, the most appropriate databases for the development of 
each algorithm (SOC, SOE, SOH, SOP, SOS, RU1L and RU2L) are defined.  

2.1.1. Databases for SOC and SOE algorithms 
 

As outlined in Section 1, the development of the SOC and SOE algorithms requires 

comprehensive data including measurements of battery voltage, current, and 

temperature under various operating conditions. These data are essential for the 

neural network to learn to estimate both SOC and SOE. To link specific conditions to 
SOC and SOE values, it is important that the data cover a diverse set of circumstances.  

Analysis of the database is intended to determine whether they contain sufficient 

variability under these conditions to support robust development of SOC and SOE 

algorithms. Given the need for these algorithms to be adaptable to different battery 

chemistries, the process of identifying suitable databases is categorized by 

chemistry types, including NMC (Nickel-Manganese-Cobalt), LFP (Lithium Iron 
Phosphate), LCO (Lithium Cobalt Oxide), and NCA (Nickel Cobalt-Aluminium Oxide). 

To ensure a robust development process, the selected databases will be evaluated 

on several criteria: the diversity of conditions they represent, the accuracy and 

consistency of the recorded measurements and the extent to which they cover the 

full range of expected operating conditions for each battery chemistry. 
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These databases will serve as the foundation for training and validating the neural 
network models, aiming to create accurate and reliable SOC and SOE estimators. 

2.1.1.1. Databases for NMC chemistry 
 

First, Table 10 shows the selected database for NMC chemistry. In this case, it is 

concluded that database #12 is the most appropriate, as it includes a sufficient 

variety of conditions, with different charge and discharge rates and temperatures. 

However, in this case only the batteries were cycled under static 

charging/discharging rates, they have not been cycled under dynamic profiles. 

Despite this, the database is considered to offer sufficient variability to model the 

SOC and SOE algorithms. Database #25 is also an option to consider, so it will be kept 
as a backup in case they are needed. 

Table 10. Selected databases for NMC chemistry for SOC/SOE estimation. 

Selected databases for NMC chemistry 

ID Name Database Analysis 

12 
Sandia Cell Cycle Testing 

Data 

• It includes variety charge and discharge rates 
combinations.   

• Data is correctly labelled.  
• Different temperatures have been considered. 
• As disadvantage, no dynamic cycling has been performed.  

25 XJTU battery dataset 

• Cyclic aging in 6 different charge and discharge strategies 
until 80% 

• Discharge and charge under different conditions. 
• Only one temperature is considered. 

 

2.1.1.2. Databases for LFP chemistry 
 

Table 11 shows the selected database for LFP chemistry. In this case, database #24 

is the most appropriate choice. Although there is no variability in discharge rate and 

temperature, it is considered to be the most comprehensive database available. 

Databases #23 and #30 will be left as backup, as they show less variability than #24. 

Table 11. Selected databases for LFP chemistry for SOC/SOE estimation. 

Selected databases for LFP chemistry 

ID Name Database Analysis 

24 
Toyota-MIT-Stanford Fast 

Charging 

• It includes cyclic aging in 5 different six-step charging 
protocols for 100 cycles.  

• As disadvantage, only one discharge rate and one 
temperature are used.  
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23 
Toyota Fast Charge Cycle 

Life Prediction 

• Cyclic aging until failure under high C-Rates 
• As disadvantage, only one discharge rate and one 

temperature are used. 

30 
Experimental galvanostatic 
discharge tests at different 

C-rates 

• Different temperatures, C-rates and DoDs are tested. 
• No dynamic discharge or charge profile is used.  
• Only few cells are tested. 

2.1.1.3. Databases for LCO chemistry 
 

After analysing the different options that exist for LCO chemistry cells, it has been 

considered, as depicted in Table 12, that #12 is the most appropriate, since it takes 

into account charges and discharges under different currents and also considers 

different temperatures. The only drawback is that there are no cycles under dynamic 

profiles. Even so, it is considered a good option to have as a reserve the dataset #29, 
which also contains cycles under different conditions. 

Table 12. Selected databases for LCO chemistry for SOC/SOE estimation. 

Selected databases for NMC chemistry 

ID Name Database Analysis 

12 
Sandia Cell Cycle Testing 

Data 

• It includes variety charge and discharge rates 
combinations.   

• Data is correctly labelled.  
• Different temperatures have been considered. 
• As disadvantage, no dynamic cycling has been performed.  

29 Experimental cycling data 
• Different temperatures, C-rates and DoDs are tested. 
• Good number of cells tested. 
• No dynamic discharge or charge profile is used 

2.1.1.4. Databases for NCA chemistry 
 

The last chemical analysed is the NCA. For the same reasons cited in 2.1.1.1.1 and 

2.1.1.3, and as shown in Table 13, it is believed that the best option for this chemistry 

is #12. However, in case #12 is not sufficient, databases #29 and #30 are also 

considered as options to be considered. 

Table 13. Selected databases for NCA chemistry for SOC/SOE estimation. 

Selected databases for NMC chemistry 

ID Name Database Analysis 

12 
Sandia Cell Cycle Testing 

Data 

• It includes variety charge and discharge rates 
combinations.   

• Data is correctly labelled.  
• Different temperatures have been considered. 
• As disadvantage, no dynamic cycling has been performed.  
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29 Experimental cycling data 
• Different temperatures, C-rates and DoDs are tested. 
• Good number of cells tested. 
• No dynamic discharge or charge profile is used 

30 
Experimental galvanostatic 
discharge tests at different 

C-rates 

• Different temperatures, C-rates and DoDs are tested. 
• No dynamic discharge or charge profile is used.  
• Only few cells are tested. 

Therefore, the databases best suited to the needs of the SOC/SOE estimation 

algorithms are believed to be #12 and #24, although databases #11, #23, #25, #29 

and #30 will be kept as backups, 

2.1.2. Databases for SOH algorithm 

2.1.2.1. BFH Algorithm 
 

There are many open battery ageing datasets available to train the SOH algorithm 

on. Many of them vary multiple factors such as temperature and C-Rate, which is 

advantageous for the training of the algorithm. All chosen datasets were measured 

on high-precision laboratory equipment which meet the data requirements. 

Database #22 will be used to test and validate the algorithm's performance with a 
dataset containing a drive profile that closely resembles the real-world operation. 

Selected databases for NMC chemistry 

ID Name Database Analysis 

12  
Sandia Cell Cycle Testing 

Data  
•  Different Temperatures and C-Rates, no dynamic tests 

19  UofM Cyclic Aging Dataset  
• Different Temperatures, C-Rates and DODs 
• Dataset goes to 70% SOH and beyond 

22  
Stanford Aging Based on 
Real Driving Profiles  

• Dynamic drive profiles, but only one temperature 

29  Experimental cycling data  
• Different Temperatures, C-Rates and DODs, no dynamic 

tests 

30  
Experimental galvanostatic 
discharge tests at different 

C-rates   

• Different Temperatures, C-Rates and DODs, no dynamic 
tests 

 

Selected databases for LFP chemistry 

ID Name Database Analysis 

12  
Sandia Cell Cycle Testing 

Data  
•  Different Temperatures and C-Rates, no dynamic tests 

23  
Toyota Fast Charge Cycle 

Life Prediction  
• High C-Rates (fast charging) but only one temperature 

24  
Toyota-MIT-Stanford Fast 

Charging  • Ageing with multiple different high C-Rate protocols 



 

 

 

Date: 23/08/2024                                                   Pag. 32 of 48 

 

Title: D3.1 - Methodologies for SOX, Self-Diagnosis 

and RUL algorithms development and data 

collection 

• Only one temperature 

30  
Experimental galvanostatic 
discharge tests at different 

C-rates   

• Different Temperatures, C-Rates and DODs, no dynamic 
tests 

 

Selected databases for LCO chemistry 

ID Name Database Analysis 

1  CALCE CS2  •  Different C-Rates, no dynamic tests 

2  CALCE CX2  •  Different C-Rates, no dynamic tests 

3  CALCE PL  • Different C-Rates and DoDs, no dynamic tests 

4  CALCE Storage and Test  
• Useful for calendar degradation analysis at different 

temperatures 

5  
CALCE Accelerated Cycle 

Life  
• Different Temperatures, C-Rates, and cutoff C-rates, no 

dynamic tests 

12  
Sandia Cell Cycle Testing 

Data  
• Different Temperatures and C-Rates, no dynamic tests 

14  
Oxford Battery 

Degradation Dataset 1  
• Dynamic drive cycles, but only one temperature 

20  
NASA Randomized Battery 

Usage Data Set  
• Different Temperatures, C-Rates, DODs 
• Older data set 

29  Experimental cycling data  
• Different Temperatures, C-Rates and DODs, no dynamic 

tests 

 

Selected databases for NCA chemistry 

ID Name Database Analysis 

12  
Sandia Cell Cycle Testing 

Data  
•  Different Temperatures and C-Rates, no dynamic tests 

29  Experimental cycling data  
• Different Temperatures, C-Rates and DODs, no dynamic 

tests 

30  
Experimental galvanostatic 
discharge tests at different 

C-rates   

• Different Temperatures, C-Rates and DODs, no dynamic 
tests 
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2.1.2.2. FHG Algorithm 
 

The first key component for accurate SOH estimation is the accuracy and data rate 

of the current measurement, and secondly the same for the temperature 

measurement. Therefore, data sets with different C-rates, with and without 

dynamics, sampled at different rates and accuracy are crucial for training and 

evaluation of the SOH algorithm. 

Selected databases for NMC chemistry 

ID Name Database Analysis 

12  
Sandia Cell Cycle Testing 

Data 
•  Different Temperatures and C-Rates, no dynamic tests 

19  UofM Cyclic Aging Dataset 
• Different Temperatures, C-Rates and DODs 

• Dataset goes to 70% SOH and beyond 

22  
Stanford Aging Based on 
Real Driving Profiles 

• Dynamic drive profiles, but only one temperature 

29  Experimental cycling data  
• Different Temperatures, C-Rates and DODs, no dynamic 

tests 

30  
Experimental galvanostatic 
discharge tests at different 

C-rates 

• Different Temperatures, C-Rates and DODs, no dynamic 
tests 

 

Selected databases for LFP chemistry 

ID Name Database Analysis 

12  
Sandia Cell Cycle Testing 

Data 
•  Different Temperatures and C-Rates, no dynamic tests 

23  
Toyota Fast Charge Cycle 

Life Prediction 
• High C-Rates (fast charging) but only one temperature 

24  
Toyota-MIT-Stanford Fast 

Charging 
• Ageing with multiple different high C-Rate protocols 

• Only one temperature 

30  
Experimental galvanostatic 
discharge tests at different 

C-rates 

• Different Temperatures, C-Rates and DODs, no dynamic 
tests 

 

Selected databases for LCO chemistry 

ID Name Database Analysis 

1  CALCE CS2 •  Different C-Rates, no dynamic tests 

2  CALCE CX2 •  Different C-Rates, no dynamic tests 

3  CALCE PL • Different C-Rates and DoDs, no dynamic tests 
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4  CALCE Storage and Test 
• Useful for calendar degradation analysis at different 

temperatures 

5  
CALCE Accelerated Cycle 

Life 
• Different Temperatures, C-Rates, and cutoff C-rates, no 

dynamic tests 

12  
Sandia Cell Cycle Testing 

Data 
• Different Temperatures and C-Rates, no dynamic tests 

14  
Oxford Battery 

Degradation Dataset 1 
• Dynamic drive cycles, but only one temperature 

20  
NASA Randomized Battery 

Usage Data Set 
• Different Temperatures, C-Rates, DODs 
• Older data set 

29  Experimental cycling data 
• Different Temperatures, C-Rates and DODs, no dynamic 

tests 

 

Selected databases for NCA chemistry 

ID Name Database Analysis 

12  
Sandia Cell Cycle Testing 

Data 
•  Different Temperatures and C-Rates, no dynamic tests 

29  Experimental cycling data 
• Different Temperatures, C-Rates and DODs, no dynamic 

tests 

30  
Experimental galvanostatic 
discharge tests at different 

C-rates 

• Different Temperatures, C-Rates and DODs, no dynamic 
tests 

 

2.1.3. Databases for SOP algorithm 
 

Data sets for the SOP algorithm development must contain at least a pulse 

characterisation test, and ideally also an electrochemical impedance spectroscopy 

(EIS) test. All the chosen datasets were measured using high-precision laboratory 

equipment, ensuring that the data requirements outlined in 1.4.3. are met. 

The public datasets may not be sufficient for the novel impedance analysis to be 

developed in WP2, in which case they will be supplemented by additional laboratory 
tests and validation. 

Selected databases for NMC chemistry 

ID Name Database Analysis 

12  
Sandia Cell Cycle Testing 

Data  
•  EIS data available, but no pulse characterisation tests 

19  UofM Cyclic Aging Dataset  • Pulse characterisation and EIS data available 

22  
Stanford Aging Based on 
Real Driving Profiles  

• Pulse characterisation and EIS data available 
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Selected databases for LFP chemistry 

ID Name Database Analysis 

12  
Sandia Cell Cycle Testing 

Data  
•  EIS data available, but no pulse characterisation tests 

23  
Toyota Fast Charge Cycle 

Life Prediction  
• Pulse characterisation tests, but no EIS 

24  
Toyota-MIT-Stanford Fast 

Charging  
• Pulse characterisation and first life EIS data available 

 

Selected databases for LCO chemistry 

ID Name Database Analysis 

12  
Sandia Cell Cycle Testing 

Data  
•  EIS data available, but no pulse characterisation tests 

 

Selected databases for NCA chemistry 

ID Name Database Analysis 

12  
Sandia Cell Cycle Testing 

Data  
•  EIS data available, but no pulse characterisation tests 

16  
Oxford Path Dependent 
Battery Degradation Part 

1  
• Pulse characterisation and EIS data available 

17  
Oxford Path Dependent 
Battery Degradation Part 

2  
• Pulse characterisation and EIS data available 

18  
Oxford Path Dependent 
Battery Degradation Part 

3  
• Pulse characterisation and EIS data available 

 

2.1.4. Databases for SOS algorithm 
 

As mentioned in Section 1.5.4, the SOS algorithm will require data from abuse tests 

for validation and training. From the open-source databases collected, two primary 

sources containing abuse test data have been identified, as shown in the table. 

Selected databases for NCA chemistry 

ID Name Database Analysis 

13  
Sandia Cell Abuse Testing 

Data 
• Cyclic testing beyond manufacturer specs for LCO, LFP, 

NCA, NMC chemistries. 
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28  Battery Failure Databank 

• Contains data of heat output, heat breakdown, cell mass 
before and after thermal runaway, and mass ejected from 
various abuse tests, such as nail penetration and thermal 
abuse. Identified chemistries are NMC, NCA 

 

2.1.5. Databases for RUL1 algorithm 
 
As specified in section 1, in order to develop an appropriate RUL1 algorithm, data 
including an evolution of the SOH (i.e., battery degradation) and the associated 
circumstances (at least temperature, voltage and current data) is required. In order 
to properly associate specific circumstances to specific degradations, it is preferred 
that the data includes a variety of circumstances. For instance, for degradation tests 
held at laboratory environments, a variety of circumstances is typically obtained by 
deploying tests at different temperatures, SOC variations, and charging and 
discharging C-rates (including zero SOC variations and C-rates for calendar 
degradation). Therefore, the analysis of the data is focused on identifying if the 
databases include enough variations in the mentioned circumstances in order to 
properly develop the RU1L algorithm.  
 
As the RU1L algorithm developed in BIG LEAP project may be adaptable for a variety 
of battery chemistries, the identification of databases is split into different 
chemistries. In other words, for each chemistry (NMC, LFP, LCO and NCA) the most 
appropriate databases are identified.  
 
First of all, Table 14 below shows the database selected for NMC chemistry. In this 
case, it is concluded that database #19 is the most appropriate, as it includes enough 
variety of circumstances, with different temperatures, charge and discharge C-rates 
and SOC variations. However, only two different delta SOCs are evaluated, and the 
database does not include information about calendar degradation. In any case, it is 
considered to be enough variability to model a RUL model for first life. Databases 
#11, #25 and #29 also include a variety of circumstances, but not as wide as 
database #19. Therefore, they will be maintained as back-up in case database #19 
shows any limitation.  

Table 14. Selected databases for NMC chemistry. 

Selected databases for NMC chemistry 

ID Name Database Analysis 

19 UofM Cyclic Aging Dataset 

• It includes variety of temperatures, charge and discharge 
rates combinations and delta SOCs.  Different pressures 
are also evaluated. 

• Data is correctly labelled with capacity evolution.  
• As disadvantage, only two different delta SOCs are 

included. No calendar degradation is analysed.  
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Table 15 shows the database selected for LFP chemistry. In this case, it is found that 
database #11 is the most appropriate option. Compared to the database selected for 
NMC, in this case there is no variability in the charging rate, but it is still the most 
comprehensive database for LFP. Databases #23, #24 and #30 are left as back-up, as 
they show even less variability in the circumstances compared to database #11.  

Table 15. Selected databases for LFP chemistry. 

Selected databases for LFP chemistry 

ID Name Database Analysis 

11 SANDIA 2020 cycling data 

• It includes variety of temperatures, discharge rates and 
delta SOCs.  In the case of NMC, it includes data of 32 
experiments.  

• Data is correctly labelled with capacity evolution, in all 
cases until 80% SOH.  

• As disadvantage, all tests are held at 0.5C charging rate, 
and the same middle SOC (50%) is used for all the delta 
SOCs. No calendar degradation is analysed.  

 
Besides, Table 16 shows the selected databases for LCO chemistry. The three 
databases are provided by the University of Maryland, and they individually analyse 
the effects of some of the typical degradation factors: Database #4 focuses on the 
calendar degradation (effect of temperature and SOC), database #3 focuses on the 
effect of discharge rate and SOC variation, and database #5 focuses on the effect of 
temperature and discharge rate. Even if the different databases do not include data 
of the same exact cell, they all make use of a prismatic LCO cell. Therefore, during 
the development of the RUL algorithm (task T3.2), it will be evaluated if merging the 
data of the three databases of Table 16 is a feasible solution. In case it is found that 
merging the databases is not a feasible option, databases #12 and #20 are also left 
as back-up options.  

Table 16. Selected databases for LCO chemistry. 

Selected databases for LCO chemistry 

ID Name Database Analysis 

4 CALCE Storage and Test 

• It analyses the calendar degradation: different 
combinations of temperature and SOC values are 
analysed.  

• Data is correctly labelled. 

3 CALCE PL 
• It includes variety of discharge C-rates and delta SOCs.  
• Data is correctly labelled. 
• Effect of temperature and charge C-rate is not evaluated.  

5 
CALCE Accelerated Cycle 
Life 

• It includes a variety of temperatures and discharge C-
rates. Different charge protocols are analysed, but only 
focusing on varying the CV phase ending point.  

• Data is correctly labelled. 
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Finally, Table 17 displays the selected databases for NCA chemistry. In this case, 
there is neither a preferred database, as it is concluded that the compromise 
between the identified advantages and disadvantages is similar in all the cases. 
Database #11 does not include the effect of the charging rate or calendar 
degradation; Databases #16-18 (treated as a single database) do not include the 
effect of the temperature or the delta SOC; and Database #21 does not analyse the 
effect of calendar degradation and it may require a pre-processing to correctly label 
the degradation associated to each set of circumstances. Database #29 is left as back-
up option for NCA chemistry.  

Table 17. Selected databases for NCA chemistry. 

Selected databases for LCO chemistry 

ID Name Database Analysis 

11 SANDIA 2020 cycling data 

• It includes variety of temperatures, discharge rates and 
delta SOCs.  In the case of NCA, it includes data of 24 
experiments.  

• Data is correctly labelled with capacity evolution, in all 
cases until 80% SOH.  

• As disadvantage, all tests are held at 0.5C charging rate, 
and the same middle SOC (50%) is used for all the delta 
SOCs. No calendar degradation is analysed. 

16 
Oxford Path Dependent 
Battery Degradation Part 1 

• Databases #16, #17 and #18 are treated as a single 
database, as the same battery cell is used.  

• Different charge and discharge rates, and different 
calendar conditions are analysed. 

• Path dependence is analysed. 
• As disadvantage, influence of temperature and delta SOC 

is not analysed 

17 
Oxford Path Dependent 
Battery Degradation Part 2 

18 
Oxford Path Dependent 
Battery Degradation Part 3 

21 
NASA Accelerated Battery 
Life Testing Data Set 

• It includes a variety of temperatures, charge and 
discharge rates, and delta SOCs.  

• Not calendar aging is analysed.  
• Data is not labelled with periodical check-ups. 

 
In short, Databases #3, #4, #5, #11, #16-#18, #19 and #21 are found to be the most 
appropriate options to develop the RU1L algorithm for the different battery 
chemistries. In addition, Databases #12, #20, #23, #24, #25, #29, and #30 are left 
as potential back-up options in case the previously mentioned databases show any 
limitations during the algorithms development phases.  
 

2.1.6. Databases for RU2L algorithm 
 

To accurately estimate the remaining useful second-life (RU2L) of the first-life 

retried battery energy storage system (SL-BESS), it is crucial to access a 

comprehensive database containing both historical and current data on battery 

performance, state of health degradation, and usage.  
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The database should provide valuable insights for RUL estimation, including the 

battery's initial health state (SOH), aging factors, failure modes, and end-of-life 

(EOL) indicators. Consequently, the data analysis is focused on determining whether 

the databases encompass enough variations in the mentioned circumstances to 

develop the RU2L algorithm properly. Like the RU1L algorithm, the RU2L prognostic 

scheme developed in the BIG LEAP project needs to be adaptable to different battery 

chemistries. However, obtaining open-access RU2L data based on various battery 

chemistries is challenging because second-life battery applications are not as 

common as first-life applications. At the time of preparing this document, an LCO 

cathode chemistry-based second-life battery usage data-based has been identified, 

as detailed in Table 18. 

Table 18. RU2L Algorithm Database for LCO Battery Chemistry 

Selected databases for LCO chemistry 

ID Name Database Analysis 

2 CALCE CX2 

• Capacity drop results up to ~26% (>20%) for multiple 
cells considering the test conditions- 

• at different discharge C-rates and cut-off voltages,  
• 100% depth-of-discharge. 

5 
CALCE Accelerated Cycle 
Life 

• Accelerated cyclic aging at different temperatures and C-
rates for different charging protocols.  

 

In addition, one of the BIG LEAP project partners, OCTAVE, provided second-use 

battery data for the development of the RU2L prediction scheme (see Section 2.2). 

Second-use batteries do not necessarily reach the end of their first life (i.e., ≥20% 

capacity drop); however, they retire from their typical high-power first-life 

applications, such as the transportation sector. Certainly, the reason is the state of 

health degradation in terms of the power delivery capacity of the battery. So, 

typically, the low-power demands stationary applications are the more economical 

and potential alternatives for these first-use retired batteries with significant 

remaining useful life - namely second-use. In view of the lack of second-life battery 

data, in this study, the second-use battery data are being considered for developing 

the RU2L prognostic algorithm. OCTAVE provided the second-use battery data for 

NMC battery chemistry, as mentioned in Table 19. Section 2.2 discusses the 

OCTAVE's in-house second-use battery data in more detail.  

Table 19. Second-use NMC Battery Data from OCTAVE 

Selected second-use databases for NMC chemistry 

ID Name Database Analysis 

# OCTAVE 2nd-use  
• Includes voltage, current, time, and temperature 

measurements of cell level and 

• SOC and SOH data using developed in-house algorithms. 
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2.2. Battery Operational Data 
 

Apart from the open-access data previously presented in Section 2.2, during Task 3.1 

of Big Leap project industrial partners (SIRO, SOLITEK, CORVUS and OCTAVE) have 

shared operational data of their batteries. This data corresponds to the operation of 

their batteries, and include at least current, voltage and temperature timeseries 

information. Depending on the provider, SOC and SOH information is also provided.  

This battery operational data is considered critical for the battery providers, and 

therefore it is not described in the current deliverable. The data sharing among the 

project partners has been granted by the Consortium Agreement (CA) signed by all 

the partners.   

3. Data Standardization 
 

Data standardisation is a crucial process in any collaborative project, especially 

where multiple partners may come to work together using the same databases. 

Standardisation ensures that the data collected and used is consistent, regardless of 

its origin. This is particularly important when developing advanced algorithms for 

lithium-ion battery condition monitoring and management, as variability in data 

quality and format can significantly affect the results and effectiveness of the 
algorithms. 

The diversity of data sources, which may come from different project partners or 

from different existing public databases, requires a common data structure to 

facilitate analysis and integration. A standardised file format, such as a .csv file, 

allows for easy manipulation and processing of data, ensuring that all participants 
can contribute and access a unified and consistent dataset. 

Therefore, to meet the requirements of the project and to facilitate the development 

of the battery status algorithms, it is believed that the use of a .csv file format with 

the columns (using ';' to divide the different columns) in the following order may be 
advantageous: 

1) Label Data Origin: 
a. Description: indicates the origin of the data, either the name of the 

project partner or the name of the database from which the data 
originates. 

b. Example: Partner1, DatabaseXYZ. 
2) Label Chemistry: 

a. Description: Specifies the chemistry of the lithium-ion battery. This 
can include different chemical compositions such as LFP (Lithium Iron 
Phosphate), NMC (Nickel Manganese Cobalt), etc. 

b. Example: LFP, NMC. 
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3) Timestamp: 
a. Description: timestamp of the data record, converted to milliseconds. 

This ensures an accurate and uniform time reference. 
b. Example: 15684. 

4) Average Voltage: 
a. Description: Average voltage of the different cells that make up the 

module or system. 
b. Example: 3.7. 

5) Average Temperature: 
a. Description: Average temperature recorded from the different 

temperature sensors. 
b. Example: 25.3. 

6) Current: 
a. Description: Current measured in amperes (A). 
b. Example: 1.5. 

7) State of Charge (SOC): 
a. Description: State of charge of the battery, expressed as a percentage. 

If this information is not directly available, it can be obtained by the 
Coulomb Counting method. 

b. Example: 80. 
8) Voltage vector or multiple columns of voltage: 

a. Description: Set of voltage values measured on different cells or 
modules of the battery. 

b. Example: 3.65, 3.66, 3.64. 
9) Temperature vector or multiple columns of temperature: 

a. Description: Set of temperature values measured at different points of 
the battery if more than one temperature is available. 

b. Example: 25.0, 25.1, 24.9. 
10) Last recorded SOH value: 

a. Description: Last recorded value of the battery's state of health (SOH), 
if available. 

b. Example: 95. 

Therefore, Table 20 shows an example of how the data in the .csv would be split. 

Table 20. Example of the .csv after the data standardization. 
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4. Methodology for secure integration of 
data into SUNDIAL platform 

 

This chapter outlines the security methodologies implemented to guarantee secure 

access to the SUNDIAL platform. The architecture leverages VPNs, firewalls, user 

authentication, and role-based access control to provide a robust security 

framework, ensuring data integrity and protection against unauthorized access. 

These strategies can be adapted for the project needs and other methodologies can 
be implemented. 

 

Figure 4. Secure integration of data into SUNDIAL platform. 

4.0. VPN 
 

This security layer is the first one and is the most important because it allows 

partners to find and securely access INEGI network. The Virtual Private Network 

(VPN) setup ensures that external users can connect to the INEGI network over an 
encrypted communication channel, providing a secure entry point into the system. 

For partners who are unable to use VPN, it is crucial to establish secure and 

controlled access to the INEGI network, in that cases will be open connection to the 

server for that partner’s network. 

4.1. Firewall 
 

To ensure the secure operation of the SUNDIAL platform, two dedicated firewalls 

need to be configured. These firewalls provide a layered security approach, 
controlling access to INEGI network and SUNDIAL platform. 



 

 

 

Date: 23/08/2024                                                   Pag. 43 of 48 

 

Title: D3.1 - Methodologies for SOX, Self-Diagnosis 

and RUL algorithms development and data 

collection 

By implementing and maintaining two firewalls, the INEGI network ensures robust 

security for the SUNDIAL platform. The first firewall protects the INEGI network 

from external attacks and controls who can access the SUNDIAL platform. The 

second firewall ensures that only users within INEGI network can access the 

platform. Together, these firewalls provide a defence in depth strategy, enhancing 
the overall security of the SUNDIAL platform. 

4.2. User authentication and Data Encryption 
 

Ensuring secure access to the SUNDIAL platform and protecting the integrity and 

confidentiality of data is extremely important. By implementing robust user 

authentication and data encryption measures, the INEGI network ensures the secure 

access and protection of the SUNDIAL platform data. User authentication 

mechanisms verify the identity of users and restrict access to authorized individuals 

only, while data encryption protects the confidentiality and integrity of data. These 

measures collectively enhance the overall security of the SUNDIAL platform, 

safeguarding it against unauthorized access and potential threats.  

5. Conclusions 
 

In this deliverable, the specifications for the SOX (SOC, SOH, SOP, SOE, SOS) and RUL 

algorithms have been defined first. The key points of each algorithm include the 

definition of the estimated variable, the development methodology, the data 

requirements and the evaluation criteria. 

In the case of SOC and SOE, algorithms will be developed to estimate the state of 

charge and battery energy using machine learning techniques. These algorithms will 

be trained and validated with accurate and representative data, and their 

performance will be measured using key indicators such as MAPE. 

On the other hand, the SOH will use a statistical data framework and a neural 

network framework, which will be used to estimate battery health status. Both 
methods require accurate, high-frequency data to capture ageing dynamics. 

The SOP algorithm will be done using an Equivalent Circuit Model, which will 

estimate the charge and discharge power limits. The algorithm must be able to 
provide accurate estimates in real time, with data captured at high frequency.  

The SOS algorithm shall evaluate through an abuse function that considers multiple 

factors affecting battery safety. This algorithm will be validated through physical and 

virtual testing to ensure its ability to prevent catastrophic events. 
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Finally, the RUL will be split into two algorithms, one for the first and one for the 

second battery life, using methods based on historical data and machine learning 

techniques. The objective is to estimate the time remaining until the battery needs 
replacement or significant maintenance. 

To develop and validate the SOX (SOC, SOE, SOH, SOP, SOS) and RUL estimation 

algorithms, open databases have been selected. The databases have been chosen 

after a thorough analysis of their content and suitability to the specific requirements 

of each algorithm. 

In the case of SOC and SOE, databases containing voltage, current and temperature 

measurements under various operating conditions have been identified. For the SOH 

algorithm, databases with accurate temperature and current measurements were 

chosen. The databases chosen for the SOP include pulse characterisation tests and 

electrochemical impedance spectroscopy (EIS). Databases containing abuse test 

data, essential to validate the SOS algorithm, have been selected. Finally, to estimate 
the RUL, databases including variability in degradation conditions were selected. 

On the other hand, the need to standardise the data in a common format, such as .csv 

files, to facilitate consistent manipulation and analysis between the different project 
partners has been identified and emphasised. 

The need for secure data management has also been identified and robust security 

methodologies, including VPNs, firewalls, user authentication and data encryption, 

will be implemented to ensure secure access to the SUNDIAL platform and data 

integrity. 

This comprehensive approach to database selection, standardisation and security 

ensures that the algorithms developed in the BIG LEAP project are accurate, robust 

and secure, improving battery management and efficiency in various applications. 
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